

EXEMPLAR

90717

NEW ZEALAND QUALIFICATIONS AUTHORITY
MANA TOHU MĀTAURANGA O AOTEAROA

3

For Supervisor's use only

Level 3 Biology, 2007

90717 Describe processes and patterns of evolution

Credits: Three
9.30 am Tuesday 27 November 2007

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–10 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

For Assessor's use only		Achievement Criteria		
Achievement		Achievement with Merit		Achievement with Excellence
Describe processes and patterns of evolution.	<input checked="" type="checkbox"/>	Describe processes and explain patterns of evolution.	<input checked="" type="checkbox"/>	Describe processes and discuss patterns of evolution.
Overall Level of Performance			E	

You are advised to spend 40 minutes answering the questions in this booklet.

Assessor's
use only

QUESTION ONE: PATTERNS OF EVOLUTION

Nectar bats feed on the nectar from flowers. One species of nectar bat, *Anoura fistulata*, can extend its tongue more than 80 mm (see below). This is more than twice the tongue length in other species of nectar bat.

*For copyright reasons,
this resource cannot
be reproduced here.*

The nectar bat *Anoura fistulata*, extending its tongue.

After N. Muchala (2006) Nectar bat stows huge tongue in its ribcage *Nature* 444: 701–702

*For copyright reasons,
this resource cannot
be reproduced here.*

Anoura fistulata feeding.

http://www.newscientist.com/data/images/ns/cms/dn10721/dn10721-2_742.jpg

(a) Name and describe the **pattern of evolution** shown by the relationship between this nectar bat and its food plant

candidate names and describes

evolution. One species developing adaptations ^{as a result} to another species' adaptations

anything biologically correct is acceptable

A

(b) Explain the role of **natural selection** in the evolution of the features shown by the bat and its food plant.

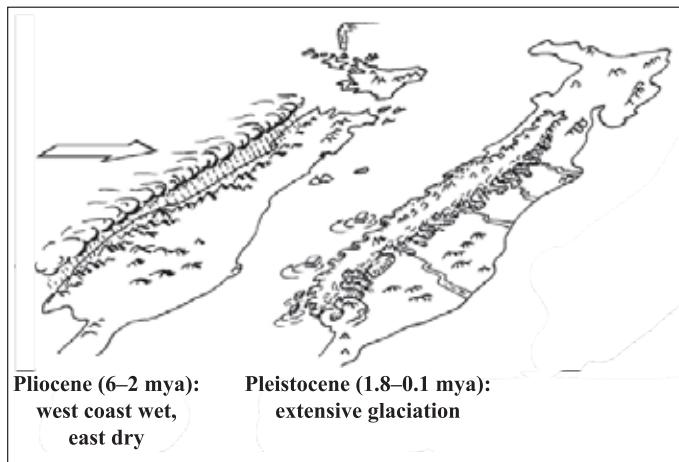
variation within the species

Assessor's
use only

~~the ~~the~~ those nectar bats that had to had tongues~~
~~long enough to reach the nectar in the long~~
~~flowers have better reproductive success. These~~
~~bats have better access to resources and so can~~
~~produce more offspring that hold their genes~~
~~for long tongues. The food plant has developed~~
~~an extremely long flower to deter other~~
~~organisms from feeding on its nectar. This~~
~~is an example of coevolution. Those plants~~
~~with longer flowers have better reproductive success~~
~~as other organisms cannot take their nectar.~~
~~As a result, bats with longer tongues~~
~~have better reproductive success as they are~~
~~able to reach the nectar provided by~~
~~the food plant.~~

M

candidate uses correct key words to define natural selection,
 and explains benefits to both the bat and the food plant


There are many endemic species of cockroach (genus *Celatoblatta*) in the South Island (below), which have undergone adaptive radiation over the last 6 million years. During this time, the region was first warm and wet, and then heavily glaciated during the last ice age (see diagram bottom of this page).

Assessor's
use only

*For copyright reasons,
this resource cannot
be reproduced here.*

Phylogenetic tree for South Island cockroaches (*Celatoblatta* spp.)

W. Chin & N. Gemmell (2004) *Molecular Ecology* 13:1507–1518

*For copyright reasons,
this resource cannot
be reproduced here.*

Locations of *Celatoblatta* species
in the South Island

adapted from W. Chin & N. Gemmell (2004)
Molecular Ecology 13:1507–1518

(c) Discuss how **geological history** has affected the adaptive radiation and distribution of *Celatoblatta* species in the South Island. impact of geological change explained

Assessor's
use only

Geological changes in the cockroach environment have resulted in new niches becoming available, different selection pressures. During the 6-2 mya (Pliocene) period, the cockroach population has been separated by geographical boundaries caused by uplift of the southern Alps. This caused separation of the cockroaches, resulting in the current distribution of the *Celatoblatta* species as they are geographically isolated. Because of this isolation, the gene pools have become isolated and the cockroaches have moved to fill many different available niches. Adaptive radiation has occurred as multiple species have derived from a common ancestor through filling of different ecological niches. New niches has resulted in different selection pressures & new species developing.

adaptive radiation defined

resultant situation as seen today

(d) The phylogenetic tree suggests that there are two distinct populations of *C. montana* on Mt Taylor (in the Central region). E

Explain the significance of these two populations.

These two populations are sympatric, different but related species living in the same area. These populations may have arisen allopatrically, and then later moved into the same geographical area, or they may have each filled different niches in the same area, developing different adaptive features until they became separate species.

N

candidate is expected to understand that the two populations are the same species

QUESTION TWO: PROCESSES OF EVOLUTION

Plants in the genus *Libertia* are found throughout New Zealand, Australia, and South America. The table below shows the chromosome numbers for several of these species.

For copyright
reasons,
this resource cannot
be reproduced here.

en.wikipedia.org/wiki/Libertia

Assessor's
use only

Chromosome number for different *Libertia* species.

Location	<i>Libertia</i> species	Diploid chromosome number
New Zealand	<i>L. puchella</i>	38
	<i>L. grandiflora</i>	114
	<i>L. peregrinans</i> (except from inland Nelson)	114
	<i>L. peregrinans</i> (inland Nelson)	171
	Artificial hybrids between <i>ixioides</i> and <i>grandiflora</i>	171
	<i>L. ixioides</i>	228
Australia	<i>L. puchella</i> (Tasmania)	38
	<i>L. paniculata</i>	76
South America	<i>L. caerulescens</i>	38
	<i>L. formosa</i> (Chile)	76

D. J. Blanchon, B. G. Murray, & J. E. Braggins (2000) Chromosome numbers in the genus *Libertia* (Iridaceae). *NZ J. Bot.* 38: 245–250

(a) Use the information from the table to describe how these different *Libertia* species have evolved.

recognises doubling of chromosome

These different *Libertia* species have evolved through
instant speciation, or polyploidy, through obligatory multiple
chromosome sets

shared evidence – polyploidy or doubling of chromosomes may be found in parts (a) or (b)

The diploid number of chromosomes in ancestral *Libertia* is 38.

(b) Explain how *L. paniculata* ($2n = 76$) could have evolved from *L. puchella*.

Two *L. puchella* species may have given rise to a
daughter with 76 chromosomes number by either:
non disjunction at meiosis for both parents forming
a 76 gamete, or a doubling of chromosomes at
a very early mitotic cell division, resulting in
a 76 individual (*L. paniculata*) that is a different
species.

Biology 90717, 2007

L. paniculata described

L. peregrinans, from **inland Nelson**, has a different chromosome number, and is different in appearance, from other populations of this species.

Assessor's
use only

(c) Explain how this inland Nelson population could have evolved, AND give evidence from the table on the opposite page to support your answer.

L. peregrinans may have arisen from ~~auto~~polyplordy, ^{auto}polyplordy with 3 sets of chromosomes. They have come from *L. peregrinans* hybridised with a different species. It is from *L. peregrinans* (found from inland Nelson) where meiosis did not occur, forming a triploid individual. Half the no of chromosomes in other *L. peregrinans* = 57. $57 \times 3 = 171$. This is a triploid individual

M

a series of polyploidy events is recognised as being the origin of this species

Note that Question Two
continues on the next page.

African indigobirds lay their eggs in the nests of various species of finch. Indigobirds are very selective in host choice. There are many species of finch in the area, but each indigobird species has a particular finch host. Indigobird nestlings are reared with the host young and learn their songs. Adult male indigobirds mimic the song of their host species. Adult females use these songs to choose breeding partners and also to choose the nests in which the females lay their eggs.

Assessor's
use only

*For copyright reasons,
this resource cannot
be reproduced here.*

*For copyright reasons,
this resource cannot
be reproduced here.*

www.bu.edu/research/graphics/spotlight/bird.jpg

Taxonomic relationships of indigobirds
and their estrilid finch hosts.

Sorenson *et al.* (2003) Speciation by host switch in
brood parasitic indigobirds. *Nature* **424**: 928–931

(d) Explain how the data in the above diagram support the statement that “*indigobird evolution shows adaptive radiation and punctuated equilibrium*”.

~~Punctuated equilibrium is a rate of equilibrium in which there are long periods of inactivity followed by short rapid bursts of evolutionary activity. The diagram supports this as, from 20-2 mya there was little activity and a lot from 2-0 mya. The data shows adaptive radiation as many species have evolved from a common ancestor to fill many different niches.~~

both punctuated equilibrium AND adaptive radiation are defined, using evidence from the resource material

M

(e) Indigobird speciation appears to be sympatric.

Assessor's
use only

Discuss how new indigobird species could evolve. You should include the role of song and other isolating mechanisms in your answer.

sympatry defined

Sympatric speciation is when a new species develops in the same geographical area. When indigobird nestlings grow up they learn the host bird's songs. This is a barrier that acts as a prezygotic isolating mechanism that helps to develop new species of indigo bird. Those birds that were raised in the same species of Finch's nest are likely to choose others raised with that species as mates. This is because they recognise the song (a learned ability) as their own species. Those that mate together will lay eggs in the same Finch species that they were raised with. This results in isolation within the indigobird species as they have different behaviour & song depending on their Finch host species, and this separates the species' reproductively. The indigobird may behave differently, depending on the Finch species that they were raised with. This acts as another isolating mechanism.

(cont)

M

we are looking for a new species formed

song recognised as prezygotic reproductive isolating mechanism

E is earned when the candidate recognises that the laying of indigobird eggs in a new Finch host nest will initiate a new species

Extra paper for continuation of answers if required.
Clearly number the question.

Assessor's
use only

Question
number

W(e) mechanism that prevents *Macroglossum* from
reproducing with those in a separate species.
Generally, Mac species will fill different niches, and
may develop different morphological features. This
will result in higher reproductive isolation. //